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i. introduction

One of the mast severe use conditions for advanced metal matrix composites (MMCs) is
combined creep and thermal cycling loadings. For dimensional change of the MMC subjected to
combined creep and thermal cycling is presumably much larger than those under either creep
loading or thermal cycling (Wu and Sherby, 1984; Wakashima et al.,, 1986; Pickard and Derby,
1989, Le Flour and Locicero, 1990). Wu and Sherby (1984) observed that the creep rate (éc) of
20% ViSiCw/2024 Al composite under thermal cycling is much larger than the creep rate of
the composite without thermal cycling for the same constant applied stress (cc) as shown in
Fig. 1.1. The conditions of the creep/thermal cycling testing of Wu and Sherby are that Tmax =
450°C, Tmin = 100°C, and the creep loading is compression. it as also seen from Fig. 1.1 that
the stress exponent, n, in the isothermal case (creep loading only) is constant over the
stress range studied and equal to 20, while that in the case of creep over the siress range
studied with thermal cycling loading is much smailer (of order 1) and is a function of stress.
This large dimensional change observed in an MMC subjected to creep/thermal cycling loading
is termed superplasticity by Wu and Sherby, and it is apparently caused by the internal
stress field with reverse loadings during the thermal cycling. this internal stress is believed
to be induced by the CTE mismatch strain discussed earlier.

During the first year, we conducted both experimental and analytical studies; the
former includes construction of new thermal cycler with capability of constant stress,
documentation of dimensional change of SiC particulate/6061 Al composite and evaluation of
the fracture toughness of layered ceramic/metal composite, while the latter is aimed at
construction of an analytical model to predict the dimensional change of a MMC subjected to
constant stress and thermal cycling where the effect of interfacial bonding was examined.
We have conducted additional analytical work to construct a dislocation punching model for
various types of interface. In the following two chapters, the results of the above
experimental and analytical studies will be stated.
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Fig. 1.1 Strain-rate vs. applied stress of SiCw/2024 Al composite under constant stress
with and without thermal cycling (Wu and Sherby, 1984).




2. Experimental Study

The major effort in the experimental study has been devoted to construction of a new
thermal cycler with constant stress loading and to obtain preliminary data of dimensional
charge of SiC particulate/6061 Al composite subjected to both thermal cycling and constant
stress. We also studied the fracture behavior of a new class of metal matrix composite,
layered metal/ceramic composite.

2.1 Design of New Thermal Cycler with Constant Stress Loading

in order to cover both low temperature metal matrix composite (SiC/Al) and high
temperature metal matrix composite (W/FeCrAlY), the system was designed to apply
temperature fluctuation up to 1400° C while it is subjected to a constant stress up to 150
MPa. In order to control the specimen temperature accurately, the specimen is loaded under
constant stress stationary while constant temperature furnaces are moving. The furnaces
are shuttled from one station to the other with a 1/4 horsepower 12 V DC electric motor
driven wire cables. The station hold time can be set independently for each furnace in 30
second increments up to a maximum of seven and a half minutes. Additionally the adoption of
constant temperature furnaces increased the expected reliability of the system by avoiding
the furnace degradation processes due to thermal cycling of the furnace itself. Because of
this the system is expected to provide reliable thermal cycle tests of 10,000 cycles
duration. The test stand is designed to apply static stress to a test specimen for an extended
period of time under a constant elevated temperature or cycling temperature. The test stand
consists of a balancing cam and a constant-load wheel that connects the test specimen to a
weight pan, as shown in Fig. 2.1. Ratio of 4.05 is used between the weight pan and the
specimen. The weight pan is a part of the overall weights and is suspended with a chain to
prevent bending moments on the load train. The load frame can be divided into two main part
sets; front frame and rear frame. The front frame is primarily constructed of 10.2 cm high by
5.2 cm wide by 6.35 mm wall thickness AS00 grade steel rectangular tube, while the rear
frame of L2.5x2.5x1/4 steel angles.
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Fig. 2.1 New thermal cycler with constant stress loading.
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Creep and thermal fatigue data are wusually obtained under constant-load test
conditions. It is often desirable and necessary to obtain test data under constant -stress
condition in the case of large strains. In this case, the applied load is adjusted as the length
of the specimen changes to maintain constant siress on the specimen. A compact cam-lever
apparatus for application of either constant stress or constant load in tension for large
uniform deformations has been used (Fig. 2.2). The load to the specimen is applied through a
circular disk of radius R (Fig. 2.2). The initial load magnification factor is rq/R , but the
factor is reduced as the specimen elongates. To maintain constant stress, the load P on the
specimen must be reduced as the specimen elongates to compensate for the reduction in area
A. Thus, the instantaneous stress P/A must remain constant. By assuming constant specimen
volume and uniform strain, LA (where L is the specimen gage length) must remain constant.
Therefore, it follows that PL also remains constant. In Fig. 2.2, under equilibrium conditions,
P=Wr/R, where W is the applied weight and r is the instantaneous moment arm of the applied
weight.

Thus, to maintain a constant stress, the following condition must be satisfied:
rL = constant - rolo (2.1)

where Lo is the initial specimen length, and ro is the initial value of r.

Thus the equation of the profile of a constant-stress cam is obtained as follows:.
L =rolo/ (Lo + (8 —60)) (2.2)

where 8, is the angle for the initial positioning of the constant-stress cam, and it can be
easily transformed into a fixed Cartesian coordinate system (x,y) (Garofalo et al, 1962).
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Fig. 22 Cam-lever system. Fig. 23 Schematic of moving furnace.




To provide balance and proper control of loading on the specimen, a balancing is added
to the loading cam. A circular disk or constant -load wheel also designed and can replace the
cam for the purpose of performing constant-load testing. The load is transmitted by DIAMOND
40SS stainless steel roller chain which may be used in ambient temperature up to 300° C.
The actual use temperature on it is 100° C. The shaft of the cam assembly is supported by
pillow block bearings.

The machine is equipped with two 30 c¢cm high by 30 cm in diameter resistance element
furnaces as shown in Fig. 2.3. The furnaces are mounted on a moving frame which slides on
guides attached to the reaction frame. The furnaces are powered by four 35.6 cm long by 2.54
cm diameter silicon carbide heating elements. Each heating element has a 10.2 cm hot
section. The maximum steady operating temperature of the furnaces is 1400°C. At a typical
maximum cycle temperature of 1100°C the steady state operating power requirement is
5000 watts. When silicon carbide heating elements are heated in air, an oxidation process
begins that will slowly increase the resistance of the bar. Initially the oxidation process is
slow, but the oxidation rate continues to climb at an ever-increasing rate.

The furnaces are controlled to a set temperature by a Barber Coleman 560 controller
and a phase SCR (Silicon Controlied Rectifier) power switch, shown in Fig. 2.4. SCR power
switch differs from other switches in its fast action. For example, while a controller may
cycle three times per minute, SCR cycles approximately once per second. This fast SCR cycle
time result in process temperature maintenance much closer to the desired set point. The
SCR modulates small increments of power to the load, unlike traditional mechanical control,
and eliminates the overshoot and undershoot associated with contactor control. In this
design, the type R thermocouple is used for the controllers. Ordinarily the controllers are
powered by the same current as the furnaces. In our case the low resistance of the element
circuit required a low voltage high amperage furnace current while the controlier logic
circuit required the original 240 volt input current.
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Fig. 2.4 Wiring of the thermal cycler.




Eurnace Transport System

The furnace transport control system can be conveniently divided into a furnace cycle
controller and a motor relay. The motor relay supplies the drive motor with the appropriate
polarity of 12 V DC current when triggered by the cycle controlier. The direct current is
supplied by an automotive battery which is charged with a 1.5 amp trickle charger. The
furnace cycle controlier directs the furnace motor relay. The furnace cycle controller
contains two four-bit switches which are used to preset a counter at the completion of a
furnace transport event. This counter reduces its total count by one when signaled by a clock
circuit. When the counter has been counted back to zero the motor relay is directed to supply
current to the drive motor.

Position switches mounted on the furnace guide rods set the furnace cycle controller
logic so as to direct the motor relay to provide current of the correct polarity. The furnace
cycle controller system is equipped with three limit switches which can disable the motor
circuit. Two of these switches are mounted on the furnace guide rods beyond the position
switches. These switches are to ensure that the motor will not drive the furnaces up into the
loading lever or lower them onto the reaction lever. The third disable switch is placed on the
loading lever support to stop any furnace transport in the event of a specimen or load train
tailure.

Load Train

The load train is a set of parts which connect the loading lever and the reaction lever
to the specimen. The load train must sustain a large tensile load while being subjected to the
time-temperature conditions imposed by the moving furnaces.

The load train is composed of chain with sprocket, one coupler, two long bars, two
inconel grips, and a test specimen (see Fig. 2.1). The chain is made of stainless steel. The
actual temperature on the chain is only about 100°C. The chain connects one side of tensile
bar with the sprocket in the rear shaft to convey load from the rear fraine to the front frame.
The load train coupler is made of mild steel. The coupler has a one inch horizontal hole
through which runs a hardened stee! pin. The coupler has also drilled and tapped to mate
vertically with the threaded stainless steel rods. The steel rods connect with high
temperature inconel grips which are drilled and tapped to mate with the test specimen (see
Fig. 2.1 and Fig. 2.6).

Iemperature-Time Curve

Figure 6 shows an example of temperature-time curves plots measured with a
thermocouple which is located on the surface of aluminum specimen. Ali the data sets used
forced air convection to cool the specimen. The data were measured for nine and half a
minute cycle where the maximum temperature (Tmax) was 200° C, 250° C, and 300° C
respectively.
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Fig. 2.5 Typical termperature-time curves for Tmax = 200, 250, and 300°C.

Specimen Preparation and Loadi

In this research, a specimen with shouldered ends "buttonhead” (no threads) is used for
tests conducted at very high temperatures, as shown in Fig. 2.6(a). Buttonhead specimens and
adapters, as shown in Fig. 2.6(b), tend to be self-aligning and pose fewer alignment problems.
The material of the Adapters are inconel 600 which has high oxidation resistance up to about
1400°C. Meanwhile, the stress in the grip bar is only about one eleventh of that in the
specimen because the ratio square of the cross section of the grip bar over that of the
specimen is 11:1. Similarly, the maximum stress in the adapter is only about one fifth of
that in the specimen. So, the stress level in both the adapter and the grip bar is much smaller
than that in the specimen, and their degradation is expected to be much smaller. Care is
required to avoid straining the specimen when mounting it in the adapters and load train.
With the specimen in place, the load train (specimen adapters or grips, pull roads, etc.) is
examined carefully for any misalignment that may cause bending of the specimen under load.
The specimen is stabilized at temperature before loading. Loading the weight pan is done
smoothly and without excessive shock. This can be done by placing a support , a scissors jack
under the load pan during loading. When all weights are in place, the supporting jack is
lowered smoothly from under the weight pan.
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Fig. 2.6 Dimensions of a specimen (a) and its grip device (b)

0.208°

0.424°
0.1915°




2.2 Preliminary Results of Dimensional Change

B8y using the new thermal cycler with constants stress (o) loading capability, we
conducted testing on SiC particuiate/6061 Al (SiCp/Al) composite. With two different
voiume fractions of particulate Vi = 10% and 20%. The testing conditions are Tmin = room
temperature, Tmax = 300 and 350°C, o = 18.1 and 24.6 MPa. The results of axial dimensio~al
change of SiCp/Al composite are plotted as a function of number of thermal cycles (N) in Fig.
2.7. The dimensional change-N reiation of SiCp/Al composite subjected to thermal cycling
and constant stress exhibits initially linear, but tends to be flattened for larger N's. This is
in marked contrast with that of W tiber/Cu (Yoda et al., 1978) and W fiber/superalioy matrix
composite {Taya et al., 1991) which are subjected to thermal cycling only, where the
dimensional change increases with N linearly for smaller N's but the rate of increase
increases with N, as schematically shown in Fig. 2.8. Sharp increase on the slope of
dimensional change-N relation for larger N's is attributed to debonding of the matrix-fiber
interface as will be discussed later. The dimensional change-N relation observed in SiCp/Al
composite in this study implies that the bonding of the SiC particulate-Al matrix interface
is strong. If the bonding wer2 not, the dimensional change would have been enhanced as N
increases like Fig. 2.8.
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It is seen from Fig. 2.7 than increase in volume fracti.n of particulate (Vi) is to
decrease dimensional change which is confirmed analytically for the case of short and long
fiber MMC (Taya et al., 1991), Fig. 2.8, although the analytical study for the case of a particle
MMC has not been made yet, hence the prediction of the dimensional change would not be
available. Fig. 2.7 also indicates that an increase in applied (constant) stress o increases the
dimensional change, which has been confirmed by Pickard and Derby {1990). This has aiso
been confirmed by our recent analytical study which was developed for a short fiber MMC
(Dunn and Taya, 1992). Testing on SiCp/Al composite specimens under other conditions, Tmax
=250°C, 6 = 30 MPa remains t0 be done. Also the evaluation of the residual mechanical
properties of as-tested composites needs to be conducted.

2.3 Fracture Toughness of PSZ-SS/PSZ Composite-PSZ Laminate

Ceramics has not only high stiffness, high compressive strength and high hardness, but
also good fatigue resistance, good creep and corrosion resistance. These material properties
make ceramics very useful in engines, cutting tools and some structure designs in aerospace
engineering. Despite the above advantages, the toughness or crack growth resistance of
ceramics is low, typically 2~5MPavm. This disadvantage really weakens the load carrying
capacity of a ceramic structure and impedes the wide application of this material. One of the
methods to improve the fracture toughness is to reinforce the ceramics with fillers (fibers
and particles) and form a ceramic matrix composite (CMC). The microstructure in a CMC is
normally homogeneous, i.e. the volume fraction of fillers is uniform spacially. it would be
interesting to examine the fracture toughness as a function of crack extension (so calied R-
curve) of CMC if the microstructure of the CMC is not uniform. An example of such a CMC
with non-homogeneous microstructure is shown in Fig. 2.9 where pure ceramic (partially
stabilized zircornia, PSZ in short) sandwiches stainless steel/ PSZ composite (ceramic
matrix composite, SS/PSZ composite in short). it would be valuable to assess the effect of
the SS/PSZ composite layer on the R-curve behavior of the laminate which is expected to
exhibit a transition behavior at the PSZ ceramic-SS/ PSZ composite interface as
schematically indicated in Fig. 2.9. The purpose of this study is to assess the R-curve
behavior of the PSZ-SS/PSZ composite-PSZ/laminate composite experimentally.
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Fig. 29 PSZ-SS/PSZ composite-PSZ laminate and expected R-curve
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2.3.1 Experiment
Loading Devi . ;

The loading device shown in Fig. 2.10 can load or unload a specimen respectively by
clock-wise or counter clock-wise turn of the arm which is sensitively controlled by turning
of the drive screw handle. The load is determined by the strain in the load cell which is
connected with the strain gage indicator—mode! 3270, whose output numbers in the display
are linearly related to the virtual load (P) on the specimen. Unlike some other loading device
in which the load is controlled by weight, this load is con.alled by the displacement at the
load point between loading pin and surface of the specimen. When the load increases, the
displacement is increased, in the meantime, the increased displacement will reduce the load
a little. This device is called displacement controlled loading device, or COD-feedback
loading device, since this displacement is related to crack opening displacement (COD). In
order to control the speed of crack propagation, wedge-loaded double cantilever beam (WL-
DCB) specimen with Chevron notch is selected (Fig. 2.11(a)). The cutting process is
accomplished by using the diamond blade in the machine LEEMATIC 2000 surface
grinders/slices. Some improvements are made in the geometry and dimension of the
specimen. The Chevron notch is replaced by the triangular notch (Fig. 2.11(b)), the V notch
angle is reduced from 60° to 45° and the width of the specimen is cut significantly into a
narrow one. By doing so, one can obtain a pre-crack more easily.
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Fig. 2.10 Loading device and WL-DCB Fig. 2.11 WL-DCB specimen: (a) chevron
specimen notch, (b) triangular notch.

Pre-crack Chevron Notch

Graung




In order to measure the fracture toughness, one can use data of COD of a specimen and
the results of finite element analysis (hybrid-experimental-numerical method). Moiré
interferential is a reliable displacement measurement method which can measure COD of the
specimen used in this experiment. The details of the principle of the Moiré interferometry
can be found elsewhere (Post, 1987). Moiré interference can be produced by several different
optical systems. The main part of the work is to obtain two coherent parallet lights from the
right angle. In this experiment, a simple optical set-up as shown in Fig. 2.12 is used, where
the second beam of coherent light is obtained with assistance of mirror 2 instead of two
laser radiators. The function of the special filter and lens is to get a disk of parallel light,
which should cover Mirror 2 and the specimen. The red laser beam comes from the Model 159
10mw Helium-Neon laser generator. Due to low power, there is no fan in the radiator. This is
very important, because if the vibration is brought from the fan, it will affect the fringes. In
this experiment, the grating frequency is 1200 lines per millimeter, and the wavelength of
the He-Ne red laser light is 6328nm which is equal to 6328x10-10m, hence the angle of the
incident light is given by

fx 1 28 x 107
o = sin'! 5 = sin'! 200 x 62 8 x 1077 so3e (2.3)

Since the fringe pattern directly represents the displacement field, it is used to
measure CODs which are in turn used to compute elastic energy. Following the principle of
the moiré fringe in deformed field, the x-direction displacement ( u ) can be found in the
fringe pattern, and given by

u=NP (2.4)
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Fig. 2.12 Moiré interferometry system for Fig. 2.13 An example of Mairé pattern.
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Where N is fringe order and P is pitch of the grating. There exists a difference between
geometry Moiré and Moiré interferometry. In the Moiré interferometry, the pitch of the
grating must be used as half of the real pitch. For example, if the pitch of the grating (P) is
1/1200 millimeter, when the displacement is calculated by eq. (2.2), the effective pitch
(Peitt) should be 1/2400 millimeter. Fig. 2.13 is one of the moiré fringe patterns observed in
this experiment.

Basically, the zero-order fringe, which has no x-direction displacement on the fringe,
is a bright straight line at the specimen's symmetric center connected with the crack tip.
Next to the zero-order fringe is the dark half-order fringe, which represents displacement of
the half pitch of the effective grating.

Preat 1 1
- N8l oy
U= NPett =N 2 2 2400

= 0.2083 x 10-3 (mm) (2.5)

Similarly, the fringe order at load point can be counted, for example for N = 56.5, the
displacement is

1

u = NPetf = 56.5 x 3700 = 23.542 x 10-3 (mm) (2.6)

Since the load and geometry of the specimen are symmetrical, only a half of the
specimen is used to compute the R-curve. However in reality, due to the error of the grating
coating, the fringe pattern is often not symmetrical. Thus the average nurnber is used to_
represent x-displacement.

Experimental Procedure

First, one must adjust the angle of the mirror 2 in Fig. 2.12 to obtain horizontal
parallel fringe lines when the load is zero. The fewer these lines, the more accurate the
optical system is adjusted. With the increase of the load, both the numbers of the fringes
and the shape of the fringes are changed. In order to keep the fringe pattern symmetrical in
this procedure, the angle of mirror 2 must be adjusted every time when an increase of load is
applied. But only one direction of the angle needs to be adjusted, either up and down or left
and right; otherwise, CODs of the specimen are not accurately shown by the fringe pattern. in
fact, the absolute symmetric fringe pattern is very hard to maintain during the experiment,
so the CODs measured at both edges are averaged.

Without a successive stable crack growth, the R-curve can not be obtained. Thus the
load must be increased very slowly.

Computation of Energy Release Rate
Energy release rate is defined by

G =9((%91 (2.7)

where F is work done by external force, U is elastic energy contained in the specimen and a
is the crack length. In the actual computation, the derivative in the eq. (2.8) is approximated
by the incremental form:
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AF-AU  (Fp,1 = Fp) = (Unsy = Unp)
Gn- Aa = (an*1 - an) (2-8)

This requires the experimental procedure of continually recording the load, crack length and
displacement from which the R-curve is computed.

Since PSZ and PSZ/SS composite are both brittle material, only elastic energy is
considered in this case, and the analysis and computation can be based on linear elastic
fracture mechanics (LEFM). In this fracture test , load in y direction is read by the strain
gage indicator while the displacement in x direction at loading point by the Moiré fringe
pattern

Exu -nal work and elastic energy can be computed by a finite element method (FEM). For
a crack e.ltension Aa in the specimen, a new mesh is generated and new external work and
elastic energy are computed. Then by the use of eq. (2.5), the energy release rate is ccmputed.
The contribution to the energy change by Y component of the force (Fy) is so small, thus it
can be neglected compared with the contribution by the displacement in x-direction. Then the
eq. (2.5) can be simpiified as

Up-U
Gn ___ﬂ____'_‘.*_l = Rn (2.9)
dn+1 — an

In this equation, an.1 is always larger than a, and Up,1 is always less than Un, hence the Rp_
is always positive.

Due to the symmetry of the specimen geometry and the load, only a half of the
specimen geometry needs to be considered. Along the crack growth line, the denser mesh is
needed and the node position around the crack tip should be changed to the quarter node. By
doing so, @ more accurate computation result can be achieved.

2.3.2 Result and Discussion

The experiment is performed on three specimens: one specimen made of PSZ only and
two PSZ-SS/PSZ composite-PSZ laminate specimens with two different volume fraction of
SS in the SS/PSZ composite area. The dimensions of the specimens are identical and they are
shown in Fig. 2.14.

The mechanical properties of SS, PSZ and SS/PSZ composite are shown in Table 2.1,
where those of the composite are estimated by using the Eshelby's model (Taya and
Arsenault, 1989).

In order to examine the effects of SS phase on the R-curve behavior in PSZ-SS/PSZ
composite-PSZ laminate, two specimens are used: one contains 10% SS, another one 20% SS
in SS/PSZ composite layer. As a reference, a pure PSZ specimen is also used. The results of
R-curve (energy release rate) of these three specimen as a function of Aa are shown in Fig.
2.15, where SS/PSZ composite !ayer (CMC) region is indicated by horizontal bar.
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Fig. 2.14 Dimensions of PSZ-SS/PSZ-PSZ laminate specimen. i

Table 2.1 Mechanical Properties

E (GPa) Poisson's rate v | CTE (10°6/C°)
SS 196 0.26 14.0
PSZ 168.8 0.3 11.1
10%SS+90%PSZ 171.4 0.296 11.3
20%SS+80%PSZ 174.0 0.292 11.6

It is often useful to convert R-curve to KRr-Aa relation, where KR is the critical stress
intensity factor or fracture toughness at a given crack length Aa. In plane stress condition

Kp=VER (2.10)

where E is modules of elasticity and R is crack growth resistance. Note in this formula,
different values of E should be used in the different region. Fig. 2.16 is the Kr-Aa relation
obtained from Fig. 2.15 and eq. (2.10).

It is clear from Figs. 2.15 and 2.16 that the energy release rate (R) and fracture
toughness (KRr) which are small during early stage of crack propagation, jump to a relatively
large value once the crack advances the CMC region. The jump in terms of Kr is almost twice
as large as that of unreinforced PSZ specimen . Figs. 2.15 and 2.16 also show the gradual
increase in R-Aa or Kr-Aa curve in early stagc of crack propagation characteristics with
brittle materials.
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3. Analytical Study - I: Dislocation Punching From Ceramic/Metal Interfaces

When two different materials are bonded, misfit strain exists at the interface at and
around which high stress field is induced. This misfit strain at the interface is due t0 the
mismatch in the stiffness of the materials and in coefficient of thermal expansion (CTE)
under temperature change. The order of the misfit strain due to CTE mismatch can be quite
large for larger temperature changes. Microscopically this misfit strain at the interface is
accommodated by dislocations near the interface. When the magnitude of the stress field
becomes too large, relaxation of the stress of large magnitude is more likely to take place.
Punching of dislocations from the interface is such a relaxation mechanism and has been
observed in dispersion-hardened alloys (Hedyes and Mitchell, 1953; Weatherly, 1968; Ashby
and Johnson, 1369), metal matrix composites (Chawla and Metzger, 1972; Vogelsang et al.,
1986; Taya et al., 1991), and metal coating/ceramic substrate system (Shieu and Sass,
1990).

The dislocation punching mode! was first used by Ashby (1966) to expiain the
strengthening mechanism of dispersion-hardened alloys subjected to shear (plastic) strain Y
where the punching of prismatic dislocation loops along the secondary slip planes is
assumed. The work-hardening predicted by the Ashby's model is

where t and ty are the flow stress and initial yield stress in shear, u, b and Y are the shear
modulus, the Burgers' vector and plastic shear strain of the matrix, respectively, and t and d-
are the volume fraction and diameter of particles. The Ashby's model predicts well the
parabolic dependence of t on Y observed in the experiment. The misfit strain in the Ashby's
model before punching is represented by arrays of edge dislocations piled up at the
particle/matrix interface. Tanaka and Mori (1970) solved the problem of misfit strain at the
interface by using the Eshelby’'s model (Eshelby, 1957) where the misfit (plastic) strain at
the particle/matrix interface is smeared out to become “transformation strain” (Eshelby,
1957) or “eigenstrain® (Mura, 1987). The stress-strain relation of a ccmposite predicted by
the Tanaka-Mori model is given by

Go=0y+ hep (3.2)

where Go and oy are the flow stress and initial yield stress, h and ep are the work-hardening
rate and plastic strain along the loading direction. The linear relationship between ©o - Oy
(work-hardening) and plastic strain ep in the above equation agrees with the experiment for
small range of plastic straining. For larger plastic straining, however, stress-strain curve
deviates from the linear work-hardening predicted by the Tanaka Mori model. Tanaka et al.
(1972) proposed a model to account for non-linear work-hardening at larger strains by using
a dislocation punching model.

Modeling of dislocation punching in a metal matrix composite subjected to temperature
change AT was first studied by Arsenault and Shi (1986) who used an equiaxed particulate
(its length t) as a reinforcement and obtained the average dislocation density in the matrix
metal, p given by

__t2fer 1
P=b(1 - 1) 1 (3.3)
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where f is the volume fraction of particulates, et is CTE mismatch strain (ATAa), b is
Burgers' Vector. Once p is calculated, the increase in the matrix flow stress due to CTE
mismatch strain, AGcTg may be estimated by

accTE = Pou\ p (3.4)

where B is a constant of order 1, p is the matrix shear modulus.

Since 1986, more rigorous dislocation punching models have been developed by Taya
and his co-workers, and they are aimed at various types of reinforcement geometry:
spherical particle, short fiber, disc-shaped tliller and continuous fiber. In this paper, we
shall review recent studies on dislocation punching models for these types of reinforcement,
and also the dislocation punching model for thin film/substrate system.

3.1. Dislocation Punching From a Short Fiber.

Taya and Mori (1987) studied analytically the dislocation punching from a short fiber in
a short fiber metal matrix composite (MMC). A short fiber is simulated by a prolate
ellipsoidal inhomogeneity to make use of the Eshelby's method and the CTE mismatch strain
eT is initially adhered to the fiber-matrix interface as surface dislocations (prismatic
dislocation loops), Fig. 3.1(a). Due to the fact that the stress at fiber-ends is highest and the
punching of the dislocation loops are favorable along the fiber axis (x3-axis), some of the
dislocation loops are punched along the xs-axis, Fig. 3.1(b).

l

X3

(a) (b)
Fig. 3.1 Analytical model used by Taya and Mori (1987) to study the relaxation of CTE
mismatch strain at short fiber/metal matrix interface by dislocation punching: (a)
before punching (unrelaxed stage), (b) after punching (relaxed stage)
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Fig. 3.2 Punching distance (c’) normalized by half of short fiber length vs. fiber aspect
ratio (c/a) for SiC short fiber/Al matrix composite with AT = -200°C, ku = 0.001.
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Fig. 3.3 Stresses are calculated at points A, B, and C for (a) relaxed and (b) unrelaxed
stages.
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The stress field in and around a short fiber and the total strain energy of a short tiber
MMC can be calculated if the following eigenstrains are given in the domains of fiber ()
and of the punched region encompassing the fiber (£22):

r

er 0 O
gﬂ-< 0 e O in Q4 (3.5)
.0 0 O©

@2 = in Q2 (3.6)
c
o o er( c,)

where ¢’ and ¢ are the punching distance and half of short fiber length along the x3-axis,
respectively, Fig. 3.1. The criterion for dislocation punching is given by

U oW
-— sc—":a_c7 (3'7)

where U is the total strain energy of the composite of Fig. 3.1(b) and its explicit expression-
is given elsewhere (Taya and Mori, 1987), and W is the total energy dissipation due to
punching, i.e., plastic work required for the motion of the dislocation loops during punching
and given by

c ¢
W.(a) fk (c - 1)e'r (3.8)

where c/a is the fiber aspect ratio, k is the friction stress of the matrix metal against
dislocation motion.

Equation (3.7) provides the relations between punching distance (c’) and several
constituent parameters. Fig. 3.2 shows such an example, i.e. the punching distance (c’)
normalized by half of fiber length (c) as a function of fiber aspect ratio (c/a). Figure 3.2
implies that the punching along the fiber axis would become more difficult as fiber aspect
ration increases. In this case, the punching is more likely to take place along the direction
transverse to the fiber axis, as discussed in Section 3.3. The relaxation by dislocation
punching results in lowering the stress field in around a short fiber. Table 3.1 shaws the
normal stress components (G191, 622 and G33) normalized by 2u where | is the matrix shear
modulus for relaxed (after punching) stage, Fig. 3.3(a) and non-relaxed (before punching)
stage. Fig. 3.3(b). The stresses are calculated for several locations: within a fiber (A), just
outside the fiber at equator (B) and just outside the fiber-ends (C). Table 3.1 indicates that
the magnitude of the stress field in and around a short fiber in the relaxed stage indeed is
smaller than that of the non-relaxed stage. The data used to compute the stress field (Table
1) and punching distance (Fig. 3.2) referred to SiC short fiber/Al system and are given
elsewhere (Taya and Mori, 1987).
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Table 3.1. Stress at points A, B and C (see Fig. 3.3)

gux 10-2 For relaxed state For non-relaxed state

2p 11 22 33 11 22 33
A -0.225 -0.225 -0.84 -0.245 -0.245 -1.184
B -0.225 0.198 0.069 -0.245 0.213 0.119
C 0.0035 0.0035 ~0.84 -0.149 -0.149 —0.184

Dunand and Mortenson moditied the above mode! to account for partial relaxation by
dislocation punching along the fiber axis. The eigenstrains based on this model are given by

eqs. (3.5) and (3.6) where (3,3) element in e*1 is replaced by (1-x) er and that in e*2 by yer

c . . . .
(c_} where y denotes the fraction of the misfit strain to be relaxed by dislocation punching.

The modified model of Dunand and Mortenson appears to explain well their experimental
results.

3.2 Dislocation Punching From a Spherical Particle

The dislocation punching from a spherical particie was studied both theoretically and
experimentally by Taya et al. (1991). It is expected that the direction of dislocation punching
from a spherical particle is spherically symmetric. Fig. 3.4(a), (b) and (¢) show the CTE
mismatch strain adhered to the particle-matrix interface as dislocation ioops before-
punching, after punching, and the rearrangement of the dislocation loops, respectively. The
dislocation punching shown by Fig. 3.4(b) should take a torm of glide motion as illustrated by
Fig. 3.5, i.e. during punching an edge dis!scation is degenerated to two partiai edge
dislocations which move along the glide planes, and after punching, two edge dislocations
are formed to one edge dislocation arruyed in a spherically symmetric manner. The
eigenstrains representing the case of Fig. 3.4(b) (or Fig. 3.4(c)) are isotropic in a domain of
punched spherical region including the particte (Q2) and given by

\
<
eT(c,,J’ 0 0

e2=4 0 er(ﬁf o (3.9)

c

The criterion for dislocation punching is given by eq. (3.7). ¢’ and ¢” are defined by Fig.
3.4(b). The geometry after punching in a spherical particle MMC is shown schematically in
Fig. 3.6 where (a) and (b) denote the case of extensive and less extensive punching,
respectively. It is noted here that in the case of extensive punching, Fig. 3.6(a), the punched
dislocations located at the boundary of Q2 are canceled out if they are overlapped with
adjacent dislocations, resulting in no contribution of geometrically necessary dislocations
to increase in the matrix flow stress. However, a5 the geometrically necessary dislocations
are punched, statistically stored dislocations are left out in the wake region (Q2 — Q1) since
the actual mode of the dislocation punching is not spontaneous, but successive punching of

r
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(a) (b) (c)
Fig. 3.4 Dislocation punching model used by Taya et al. (1991): (a) CTE mismatch strain ey
adhered to the particle/matrix surface as prismatic dislocation loops. (b) after
punching to ¢’, (c) rearrangement of loops for spherical symmetry.
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Fig. 3.5 Dissociated dislocations make glide motion and are combined 10 form a new
dislocation. :

(a) (b)
Fig. 3.6 Punched regions in a particle MMC:

(a) for extensive punching resulting in overlapping of the frontal boundaries.
(b) for less extensive punching.
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dislocation loops. Thus, for extensive punching, one can expect an increase in matrix flow
stress due to the statistically stored dislocations.

The formulations of the stress and strain field, and also the strain energy of a
composite, are again based on the Eshelby's method and its details are given elsewhere (Taya
et al., 1991; Shibata et al., 1992). The average dislnocation density for less extensive
punching mode, Fib. 3.6(b) is given by

- 6erf
P=ab(1 - 1) (3.10)

where f is the volume fraction of particles, et is CTE mismatch strain, a is the radius of a
spherical particle and b is Burgers' vector. A comparison between eqgs. (3.3) and (3.10)
reveals that the averaged dislocation density in the matrix predicted by the Arsehault and
Shi model is twice as much as that by the Taya et al. model, if t is set equal to a. In the case
of extensive punching, Fig. 3.6(a), the average dislocation density is computed by Shibata et
al. (1992) and given by

— 6tke -
p:—uFIIn (f =13 (3.11)

It is noted that eq. (3.11) was derived by accounting for only statically stored dislocations.

In order to predict the yield stress of a particle MMC, one should consider another
strengthening mechanism, i.e. back stress strengthening which is to account for resistance
of elastic particles against plastically deforming matrix metal. Hence the increase in the
compaosite yield stress over the unreintorced metal is due to two mechanisms: dislocation
punching as a result of retaxation of CTE mismatch strain at the interface (AG0cTg) and back
stress (AQp). In order to test the validity of the above strengthening mechanisms, Taya et al.
(1991) conducted experiment on SiC particie/6061 Al composite-T4 (SiCp/Al). The
mechanical properties of SiCp/Al composite are given in Table 3.2.

Table 3.2. Material Properties

Parameter Unit Al Matrix SiC Particle
Young's modulus GPa 68.3 427

Yield strength MPa 97.0 —
Poisson’s ratio 1 0.33 0.17
CTE x 10-6 C 23.6 4.3
Burgers' vector nm 0.283 —
Average particle radius um — 5.0

SiCp/Al specimens were solution-treated at 530°C, thus eliminating much of the
dislocations induced by processing, then quenched to several different temperatures (Tg):
room temperature, 0, —64, and -196°C, followed by tensile testing at these temperatures to
measure the yield stresses. The purpose of quenching is to generate given CTE mismatch
strain at the interface. Figure 3.7(a) shows the composite yield stresses experimentally
obtained (open circle) and predicted by the dislocation punching and backstress strengthening
models (filled circle) as a function of temperature change by quenching, AT = Tq — §30. In
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order to examine as t0 which strengthening mechanism is dominant, AGp and AGCTE are
plotted in Fig. 3.7(b), indicating that AGcTe is larger than AGp,. Namely strengthening due to
dislocation punching is dominant.

3.3 Dislocation Punching From a Continuous Fiber.

As the results of Fig. 3.2 suggest, the dislocation punching from a continuous fiber in a
continuous fiber MMC is more likely to take place along the transverse direction (transverse
to the fiber axis). This was studied analytically by Shibata et al. (1992). The eigenstrains
after punching are given by

(0 o0 0

e =4 0 0 0 in Q4 (3.12)
. 0 0 er
( eT %)z 0 0 W

e'2- ﬁ 0 eT(%T o (inQ2 (3.13)
. 0 0 0 /

where 21 and 2 denote the domains of the fiber and the punched region encompassing the
fiber, respectively; a and R are the radii of the fiber and the punched region, respectively. By
using the Esheiby's mode! to compute the total elastic energy of the composite and the
criterion for punching, eq. (3.7), and the dissipation energy for punching, one can obtain the
punching distance (radius of {he punched region) R as

= (1 + 2v) per | 1/2 _

where p and k are the shear modulus and friction stress of the matrix metal, respectively.
Equation (3.14) was obtained for a single continuous fiber embedded in an infinite matrix.
The result of the punching distance R for a continuous fiber MMC with finite volume fractions
of fiber can be obtained similarly (Shibata et al. 1992). It is noted here that the yield
criterion based on Hill's model

Or — Cg | =2k (3.15)

is not satisfied within the plastic domain (Q2 - Q) where o, and o, are radial and
circumferential stress components. However, the average stress acrcss the boundary of Q2 is
defined by

Gij= '™ {0 (R-€) + o (R + &)} 12 (3.16)

satisfy the yield condition, eq. (3.15) which gives rise to eq. (3.14).
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Fig. 3.7 Composite yield stress vs. temperature change by quenching: (a) a comparison
between the experiment and the prediction based on the dislocation punching
model, (b) breakdown of the increase in the composite yield stress indicating
strengthening due to disiocation punching (AccTg) dominant over that due to back
stress (Aop).
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(a) (b)
Fig. 3.8 Dislocation punching model for a thin metal coating/ceramic substrate system: (a)
before punching, (b) after punching to distance z.
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3.4 Dislocation Punching From a Planar Interface

The generation of dislocations at the interface of a thin coating/substrate system has
been studied in terms of critical thickness of the coating-misfit strain relation (Matthews
and Blakesee, 1974; Freund, 1987). These studies are aimed at epitaxial layers and the order
of the critical thickness is normally much smaller, 10 ~ 100 nm. For a coated substrate
system with non-epitaxial interface and intermediate coating thickness, the results of the
above studies are not applicable.

Here we consider a metal thin coating/ceramic substrate with CTE driven misfit strain
at the interface. The CTE misfit strain is defined by

et

ij = @ %ij

(3.17)
e' = ((lc - as)AT

where ac and as are CTE of the coating and substrate, respectively, §ijj is knocker's delta and
AT is temperature change. First we examine the stress fieid before punching Fig. 3.8(a) and
then the case of punching to some distance, Fig. 3.8(b).

It is assumed in this model that the thickness of coating is reasonably thin, so that

out-of-plane stress component in the coating (033) can be ignored, and also that the piane
strain condition be held for in-plane directions, x1- and xz-axes within the coating.

Before Punching
By the assumption of plane strain along the xi- and xpz-axes,
e11 =ez2 =€ (3.18)

where ejj is elastic strain component. Hooke's law with o33 = 0 gives rise to

C11 Vv
€11 = E —§022
(¢} v
e22=_é2_Ec11 (3.19)

Vv
e33 = - g (011 +022)

where v is the Poisson’s ration of the coating.

From eqgs. (3.18) and (3.19) we obtain the in-plane stresses and out-of-plane strain as

Ee’
C11 =02:e=-‘__(1 V)

(3.20)
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Punching to Distance z

Assuming that the dislocation punching took place with its frontal boundary located Z
from the interface, Fig. 3.8(b), we shall calculate the stress and strain field within the
punched region (Q1) and elastic region (Qo) and also the condition for punching.
in Elastic Region (Qp):

Stress oj and strain ejj are the same as those in the coating before punching, i.e. given
by eq. (3.20).

in Plastic Region (Q1):

Denoting plastic strain in the punched region by ei‘.’ and using the plane strain condition
in the x4 — x2 plane and incompressibility of plastic stréin, one arrives at

e =ef - —er

1" 22
(3.21)
P _
853 = 2€T
and
cij=0 (3.22)
It is noted that stresses in Q4 are all zero due to complete relaxation.
i i n 1asti r
The elastic energy per unit width along the x2-axis is given by
1
U =3 Oij &ij (2 ~-2) {3.23)
A substitution of eqgs. (3.18) and (3.20) into (3.23) yields
E eI"’ (2 - z)
U= (1 = v) (3.24)
The plastic work per unit width, W is given by
W = gjj ei‘j’ z (3.25)

by using eq. (3.21) and G11 = 22 = Gy (yield stress), W is reduced to
W = 4keTz

where Oy = 2k was used and Kk is yield stress in shear. The punching criterion is given by
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U oW

— Ny —

T2 < az (3.26)

where the left term represents the driving force for punching while the right is the retarding
force against punching.

By substituting eqs. (3.24) and (3.25) into (3.26) we obtain the congition for punching

4K (1-v)

Inequality (3.27) can be derived by invoking the yield criterion across the frontal
boundary of the punched region, i.e. the interface between Qg and Q1, Fig. 3.8(b). The average
stresses across the boundary are calculated by using egs. (3.16), (3.20) and (3.22).

= ~ Ee
C11=022=~ 2*(1 _Tv) (3.28)

which is substituted into Hill's yield criterion

G33 ~GC11 |2 2k (3.29)

A substitution of eq. (3.28) and 633 = 0 into (3.29) leads to (3.27). -
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4. Analytical Study Il: Creep and Thermal Cycling Creep of Metal Matrix
Composites

4.1 Background

Dimensional stability in high temperature use environments is crucial for many metal
matrix composite (MMC) applications. While MMCs reinforced by ceramic fibers offer creep
resistance superior to the unreinforced metal, it is well known that the combination of
relatively small applied stresses and cyclic thermal loading can result in creep rates far in
excess of those observed during isothermal high temperature creep. Even in the absence of
an applied stress, a detrimental dimensional change has been observed in a number of
thermal cycled metal matrix composite systems. These effects are attributed to internal
stresses that are deve.oped during therma! cycling due to the coefficient of thermal
expansion misnatch between the matrix and fibers. Creep and thermal cycling creep are
among the least understood aspects of the deformation of MMCs, but are of utmost
importance for the development of MMCs for high temperature structural applications.

Creep in short fiber metal matrix composites has been studied both experimentally and
theoretically by numerous researchers. A comprehensive review is not attempted here, but
the reader is referred to recent reviews by Taya (1991) and Taya et al. (1991). Recent works
regarding modeling of creep of short fiber composites include Zhu and Weng (1989, 1990a,
1990b), Wang and Weng (1992), and Pan and Weng (1992). In these works, Eshelby's (1957)
equivalent inclusion method was combined with the Mori-Tanaka (1973) mean field approach
to estimate the stress redistribution due to an incremental creep of the metal matrix and
the subsequent creep deformation of the composite. A similar approach was used by Taya
and Mori (1987) to model creep of a short fiber MMC during the high temperature hold stage
of a cyclic thermal loading. With regards to thermal cycling and thermal cycling creep of
short fiber MMCs, Derby (1991) and Taya et al. (1993) have recently provided a
comprehensive review of the literature and a list of references with regards to both
experimental and theoretical aspects can be found therein. Other recent contributions have
been directed at understanding the effects of reinforcement geometry on the thermal cycling
creep of short fiber MMCs through the development of idealized models and the application of
finite element methods (Zhang et al., 1991; Chen and Daehn, 1991; Povirk et al., 1992).

During isothermal creep of a MMC, degradation of the fiber matrix interface, often in
the forms of void nucleation and growth followed by debonding, has been observed to lead to
tertiary creep and creep fracture (Nieh, 1982; Morimoto et al., 1988; Dragone et al., 1991;
Pandey et al.,, 1993). The acciumulation of inelastic strain during thermal cycling has also
been observed to be accompanie by the development of interfacial damage in the forms of
porosity, debonding, and an attached reaction zone containing radial cracks (Echigoya et al.,
1990). These damage processes, in both isothermal and thermal cycling creep further
accelerate the inelastic strain accumulation and thus it is important to understand the
evolution of damage and its effect on the overail response of the MMC.

This work is a continuation of the authors' study of creep, thermal cycling, and creep
thermal cycling (thermal cycling with an applied stress) of metal matrix composites. In
particular, a micromechanics-based analytical approach is proposed to model creep and
thermai cycling creep of short fiber MMCs with interfacial damage. The approach is an
extension of the analyses of Taya et al. (1991) for creep, Taya and Mori (1987) for thermal
cycling, and Dunn and Taya (1992) for creep thermal cycling of MMCs and is based on the
combination of Eshelby's (1957) equivalent inclusion method and the Mori-Tanaka (1973)
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mean field approach (see for example Mura, 1987). Interfacial damage is modeled through a
hybrid approach where the composite is assumed to contain both perfectly bonded fibers and
fibers with damaged interfaces. The evolution of damage is described by an arbitrary
statistical distribution. Efforts 1o correlate the statistical distribution of interfacial
damage with experiment are currently underway and the results will be subsequently
reported.

4.2 Analytical Model

It is assumed that initially all fibers are perfectly bonded to the matrix. At some
point during the creep or thermal cycling creep loading, though, interfacial damage begins to
occur. The effect of the damage is a loss in the ability to effectively transfer load from the
matrix to the fibers. When damage has occurred, it is assumed that the aligned short fiber
and matrix are still in mechanical contact except at and near the poles of the fibers. This
characterization is based on numerous reports from the literature regarding debonding during
creep and a microscopy study of thermal cycled W/FeCrAlY short fiber composites of which a
typical micrograph is shown in Fig. 4.1 (Armstrong et al, 1991). The fiber-matrix interface
is assumed to be stress free in the x; direction but not in the x, and x, direction except in
the vicinity of the fiber ends. This assumption seems reasonable when the interface
between the short fiber is in tension, but may not be as valid when the stress field at the
interface is compressive. These implications will be further discussed in the following
section. The stress field in the debonded fibers is analyzed by following the approach
proposed by Tanaka et. al. (1970) to model the stress distribution in a spherical particle
after cavitation. The stress field in the debonded fibers is simulated by thaat of a ﬁcc}itious
figer with anisotropic moduli of Cj, = 0 with the exception of Cj,yy = Cpopp and Cyypp =
Ca211- It is noted that this reduction in moduli is only valid for the case considered here,
aligned short fibers subjected to uniaxial mechanical loading along the axis of the fiber.

In this section, the response of a composite containing two types of short fibers
(perfectly bonded and debonded) will be obtained. The debonded fibers are assumed to be
described as discussed in the previous section and the criterion for progressive debonding
will then be discussed in the following section. The domain of the analytical model, shown
in Fig. 4.2, consists of an infinite metal matrix containing a random distribution of both
perfectly bonded and debonded aligned short fibers. The domains of the entire composite and
of the bonded and debonded fibers are denoted by D, Qy, and Q4 respectively, and that of the
matrix is thus denoted by D - Q- Q4. The elastic moduli of the matrix and two types of
fibers are C,, C,, and C4, respectively. it is noted that C,, and C, are defined in the standard
manner while C4has been defined in Section 2. In this work, bold and underscored symbols
represent tensorial quantities. Both types of fibers are modeled as ellipsoidal
inhomogeneities (prolate spheroids) and for simplicity both the matrix and fibers are
assumed to be initially isotropic in stiffness and thermal expansion. To model the creep
response of the composite, a constant applied stress, g,, is assumed and in addition the
idealized time-temperature thermal cycle shown in Fig. 4.3 is assumed during thermal
cycling creep. It is assumed that the fibers deform elastically and the matrix is capable of
elastic/plastic/creep deformations. The material properties, with the exception of the yield
stress and creep properties of the matrix, are assumed independent of temperature. This
assumption can be relaxed, however, and the analysis can be easily implemented in an
incremental manner.
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Fig. 4.2 Analytical model.
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4.2.1 Creep of Short Fiber Metal Matrix Composites
fi r
The overall response of the composite to the uniform applied stress, ¢°, (with
corresponding strain e°) can be estimated by the use of Eshelby's (1857) equivalent inclusion
method coupled with the Mori-Tanaka (1973) mean field approach as applied to a three-phase

composite (Taya and Chou, 1981). Through the equivalent inclusion method, the stress in a
single representative perfectly bonded fiber is given by:

g®+gb =Cyfeo + 8 +eb] = Cpleo + 8 +eb-e'b] (4.1)
That in a single representative debonded fiber is given by:
0°+g? =Cyfe° + & +e9] = Cp,[e0 + &+ ed - &) (4.2)

where & is the volume averaged disturbance strain in the matrix and el and e'°i are the
disturbance strain and fictitious eigenstrain in the ith domain (i=b,d) required for the
simulation of the inhomogeneities by the equivalent inclusion, respectively. These can be
expressed as:

<@ >p=Cnpe (4.3).

el = Se'd (4.4)
where S is Eshelby's (1957) tensor and < g > iS the volume average of the disturbance
stress (due to both Q, and Q) in the matrix. Eshelby's tensor is a function only of the shape
of the inhomogeneity and the elastic moduli (Poisson's ratio for isotropic materials) of the

matrix and thus is the same for both the bonded and debonded fibers. It is not difficuit to
show that the volume average of gi over the entire composite vanishes which results in:

8= (S-I)[f, b+ fy e"°q] (4.5)

where { is the volume fraction of fibers. After some manipulation, eqs. (4.1) - (4.5) yield
< g >y which can be used to obtain the average stresses and strains in each phase and in the

o°
composite. Of particular interest are the average stress in the matrix, <o>n, and the

o° .
average strain of the composite , <e> ., which can be expressed as:

o°
©>n = R(Cq, Cpb, Cq. S, b, fg)0° (4.6)

ao°
<@>, = H(Cm. Cb. Cd. S, fb. fd)'go (4.7)
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Besponse to an Incremental Creep

An incremental creep of the matrix, de®, results in a redistribution of stress from the
creeping matrix to the elastic fibers, but as noted by Weng (1987), is itself a stress-free
process. Thus, Eshelby's equivalent inclusion method can be used to estimate the stress
redistribution due to an incremental creep:

dg® = Cp [dE + deb + de®] = C,-[d& + ded - de*?] (4.8)
dgd = Cq4 °[d® + ded + de®] = C/[dE + ded - de'C 9] (4.9)

de€ and de'®! are the incremental creep of the matrix and the corresponc ng incremental
eigenstrain and all other stress and strain increments are analogous to their previous
definitions in egs.(4.1) and (4.2). By a development similar to that used to obtain egs. (4.6)
and (4.7), the average stress increment in the matrix and strain increment of the composite
due to an incremental creep of the matrix, de, can then be expressed as:

<355 = U(Cm, Cp, Cq» S fo fa) G€C (4.10)

08> = V(Cp, Co, Cai S, T, fa)-0eC (4.11)

where due to the assumption of incompressibility and symmetry of deformation, deCis given'
by deC = [ - de©/2, - de©/2, de®, 0,0, 0]".

For simplicity, the creep rate of the matrix is assumed to be described by the Mises J,
creep flow rule Odqvist (1974):

eS=k J3 < gjj>nm or C=tAlop " (4.12)

where de€ = é°dt. In eq. (4.12), J, < ojj>n, and o, are the second invariant, deviatoric
components, and the flow stress of the average stress in the matrix and are all computed in
the standard manner and as usual the (+) or (-) sign corresponds to the sign of the flow
stress. The second of eqs. (4.12) results when axisymmetric deformation is present as will
be assumed here. During creep of the matrix, the average stress in the matrix can be
determined by integration of eq. (4.12) with the initial condition of eq. (4.6). From the
average stress in the matrix, the flow stress is determined as a function of €, which in turn
is a function of time. The flow stress can then be substituted into the power law of eq.
(4.12) to yield a first order nonlinear ordinary differential equation in e of the form:

€ =Af@c®+be) (4.13)

For the applied uniaxial stress along the fiber (x;) axis, the solution to the ODE of eq.
(4.13) is:

1y a

e°(t) =%{(a a°)(*"" 4+ (1 - n) Abt} 5

c° (4.14)
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where a and b are functions of C,, Cy,, Cy, S, fy, and t4. It is noted that n is assumed to be
independent of stress. This assumption can easily be relaxed to include the functional
dependence of n on stress, however the resulting differential equation must then be
integrated numerically. Finally, the creep strain of the composite is related to that of the
matrix, €S(t), through eq. (4.11).

Progressive Debonding

The model developed thus far is valid for an arbitrary combination of short fibers with
bonded and damaged interfaces. The goal of this approach is to predict the progression of
damage and its subsequent effect on the behavior of the composite. In other words, it is
desired to understand how fgq, which is initially zero, evolves with the accumulation of
inelastic strain. Here an attempt is made to relate fg to the strength of the fiber-matrix
interface through a statistical distribution function, the form of which will be obtained
from careful experiment Here it is assumed that the evolution of fy can be described by the
use of a three-parameter Weipuli distribution as:

fa = F(oip) fiot (4.15)

where fi5; is the total volume fraction of fibers, i.e., fioy = fp + fg and F(ojp) is the cumulative
density function:

- Gip\ D
F(ewor) = 1 - exp [ (g—-%;_:) ]o 2 ojp (4.16)

where b, o;,, and 6 are the shape parameter, guaranteed value of o (the stress o33 at the
interface), and the scale parameter respectively. Thus, fq is a function of a33 which is in
turn a function of time as o33 increases as stress is redistributed from the creeping matrix
to the elastic fibers. Equation (4.13) is still valid, but now it must be integrated
numerically as a and b are now functions of time. Although a Weibull distribution is used
here, it is emphasized that the proposed model is € isily able to handle an arbitrary
statistical distribution.

4.2.2 Thermal Cycling Creep of Short Fiber Metai Matrix Composites

In this section the development of an approach to model thermal cycling creep of short
fiber metal matrix composites is outlined. The model extends that of Dunn and Taya (1992)
for thermal cycling creep of undamaged short fiber composites to model the effects and
progression of intertacial damage in the same manner as was done with regards to
isothermal creep in the previous section. Thus, only a brief outline of the approach will be
given and the reader is referred to Dunn and Taya (1992) for additional details.

The composite subjected to thermal cycling creep is assumed to be subjected a
constant applied stress and then the idealized thermal cycle shown in Fig. 4.3. The initial
response to the applied stress at A; of Fig. 4.3 is identical to that described in Section 4.2.1.
During cooling (A, to B,), the composite is subjected to the uniform temperature drop AT = T,
- Ty which induces a non-uniform thermal stress field in the composite due to the mismatch
in coefficients of thermal expansion (CTEs) between the matrix and fibers. By use of the
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equivalent inclusion method, the inhomogencities with thermal strain e47 can be simulated by
equivalent inclusions with fictitious eigenstrains e"*' to yield:

gP = Cp[F +60- @] = Cp[d +eb-e"aTd] (4.17)
gd=Cy-{T+e9-0T]=Cp,p[E+e9-e"2T4 (4.18)

where esT = (a, - ay,) AT is a result of the mismatch between the CTEs of the matrix, a,, and
the bonded and debonded fibers, o, = oy .

in a manner similar to that used to obtain eqs. (4.6) and (4.7), the average
AT AT
thermoelastic stress, <o>pn, and strain, <e> ., due to e2Tcan be obtained as:

AT

<>, = P(Cm, Cb' Cd' S, fb, fd' Ay, O.m) aT (419)
aT

<e>c = Q(Cm, Cb, Cd, S, fb, fd' Qyy, (lm) AT (420)

It is assumed that the temperature drop from T, to T, is sufficient to initiate uniform
yielding of the matrix metal. The critical temperature change at which yielding of the
matrix begins, AT, = T, - Ty, can be found by subjecting the average thermoelastic stress in
the matrix to the yield criterion: -

3/2 < § '>p< G ">y = Oy 2 14.21)

where < g '>n is the deviatoric portion of the thermoelastic stress and oy, is the yield stress
of the matrix at T_.. When the applied stress is uniaxial along the xj-axis, the criticai
temperature change required for yielding of the metal matrix can then be expressed as:

Oy, - (Ra3 - Ryy) 6°
AT =24 P;‘_ P1°‘ (4.22)

The temperature drop from Ty, to T, will then result in plastic deformation of the matrix.

To compute the plastic deformation, it is assumed that the temperature drop from Ty
to T, induces a uniform plastic strain, ePL, in the matrix and that the matrix is a non-
hardening material. The assumption of a uniform plastic strain in the matrix neglects the
effects of microyielding that is known to occur near the fiber-matrix interface upon
relatively low temperature changes. It is the average stress field in the matrix, however,
that is believed to influence the macroscopic deformation of the composite and this is the
basis for the proposed approach. The uniform plastic strain, ePL, is assumed to satisfy the
incompressibility requirement ef'= 0 and as a result of symmetry (of both loading and
microstucture) can be expressed as ePL =¢PL[-1/2,-1/2, 1, 0, 0, 0 ]" = ePL K. The stress field
due to ePLcan be computed by use of Eshelby's equivalent inclusion method where eaT and 4T
iin egs. (4.17) and (4.18) are replaced by -ePt and e'P“irespectively. The plastic strain, ePL,
can be determined by applying the yield criterion to the unknown total stress existing at T,
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(B,). With the piastic strain, ePL, known, the average stress in the matrix and strain of the
composite at B, can be expressed as:

B, a® AT it

T>m = <O>p + <O>p + <O>p = Rg° + P-AT + UgPL (4.23)
81 a® AT ot
<@>c = <>y + <€>p + <@> 5 = Ho°+ QAT + VePL (4.24)

where U and V are defined by eqgs. (4.10) and (4.11). During the low temperature plateau, B;—
C,, no further deformations are assumed to occur and thus eqs. (4.8) and (4.9) describe the
state of the composite at Cy.

The thermoelastic stress developed during the heating process, C,— D, is equal in
magnitude but of opposite sign to that generated upon cooling. Reverse yielding, resulting in
plastic strains e®", may or may not occur depending on the values of oy, the yield stress at Ty,
(oyn), and AT. The state of the composite at D, can be determined in the same manner as that
upon cooling to yield:

D .

<'x_.s_>,,,1 = Rg®+ U-[t:PL + EPH] (4.25)
D

<@ = H-o%+ V.[et + €7H] (4.26)

During the high temperature plateau, D{— A,, it is assumed that the flow stress
existing at T, (Dy) is further relaxed by bulk creep of the matrix. For simplicity, it is
assumed that the creep properties of the composite matrix are the same as those of the
unreinforced matrix alloy. Eshelby's equivalent inclusion method can be used to estimate the
stress redistribution due to an incremental creep in the same manner as described in Section
4.2.1. Again the creep rate of the matrix is assumed to be described by eq. (4.12) which is
integrated in the same manner outlined in Section 4.2.1 but now with the initial conditions
of eq. (4.26) to provide the creep strain at the end of the high temperature plateau (t = 7).
Once €°(t) is obtained the overall state of the composite is:

<n~>?n2 = Rg°®+ U-[s"L + e 4 ()] (4.27)

<e>l,:2 = Hg% V-[(»:P" +eH 4 ec(t)] (4.28)

The stress-strain-time histories during the second and subsequent thermal cycles are
computed in the same manner as that of the first thermal cycle except for the provision of a
possible non-zero residual stress at A, which is easily accommodated. It turns out that the
flow stress at the end of each subsequent thermal cycle is then the same as that at the end
of the first.

Finally, a statistical distribution can be implemented to describe the progression of
damage in a manner similar to that in Section 4.2.1. For the calculations presented in the
following section, a three-parameter Weibull distribution is again used where here the
cumulative density function is assumed to be a function of the accumulated inelastic strain.
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It is reiterated that the form of the statistical distribution has only been assumed and its
precise form will be determined from careful experimental efforts which are presently
underway. It is noted that the fiber-matrix interface is in compression during cooling and
tension during heating (Takao and Taya, 1985). Thus as damage evolves, it is probably more
appropriate to use fi = fy + fg during the heating portion of the thermal cycle and fio = fy
during the cooling portion.

4.3 Sample Calculations

To illustrate, numerical computations have been performed using material properties
typical of SiC whisker reinforced 6061-T6 Al as given by Morimoto et al. (1988). Unless
otherwise noted, the creep thermal cycling parameters used are: 2t = 200 s, AT = 350K, g’ =
10 MPa, a (aspect ratio) = 5, and fio; = .2. The material properties used are Ea| = 67.6 GPa, va,
= 33, ap = 24.7x10°6 /K, Egjc = 427 GPa, vgijc = .17, ap = 4.3x10'6 /K, Ay = 1.26x10-'6 Pan/S,
Nay = 4.88.

Figure 4.4 shows the predicted creep strain versus time for a total volume fraction of
reinforcement, fio; = .15, at various levels of debonding, fio; = .15. It is seen that even though
the matrix is assumed to be in steady-state creep, the composite exhibits a period ot
transient ceep. It is readily apparent that the presence of debonded fibers dramaticaily
affects the creep behavior of the MMC. Aliso shown in Fig. 4.4 are experimental results for a
SiC whisker/6061-T6 Al short fiber composite which fall between the predictions for
significant debonding. The analytical prediction for the stress at the fiber-matrix interface
at time, t=0, is oj, = 257 MPa which significantly exceeds the ultimate strength ot
unreinforced 6061-T6 Al at 573K. It is thus likely that significant debonding existed from
the onset which agrees with the predictions of the proposed model. In Fig. 4.5, the
capabilities of the present model with regards to the effects of fiber-matrix debonding are
ilustrated.  Fiber-matrix debonding is assumed to be described by the Weibull statistics of
eqs. (4.15) and (4.16) where it is assumed that ojp° = 180 MPa (roughly twice the uitimate
strength of 6061-T6A1 at 573K) corresponding to a fairly strong bond. The effects of the
Weibull shape parameter on the creep strain of the composite are shown in Fig. 4.5 where the
corresponding Weibull probability and cumulative density functions are shown in the inset.
it is readily seen that the proposed approach allows simulation of the entire creep strain vs.
time curve of an aligned short fiber composite with the exception of the creep rupture
strain.

in Fig. 4.6, the accumulated strain as a function of the number of thermal cycles is
shown for various values of fy. for a SiC/Al MMC subjected to thermal cycling creep loading.
The highly nonlinear response as a function of fyis clearly evident. The progression of
damage appears as a jumping from the bottom line in Fig. 4.6 (fq = 0) up !0 higher values of {4
with increasing N resulting in an overall nonlinear response of the composite. This is in
qualitative agreement with experimental findings of Yoda et al.(1978) and Armstrong et al.
(1991) for thermal cycling. The predicted accumulated strain of the composite subjected to
creep only at Ty, based on the present theory (egs. (4.8) - (4.14)) is far less than those under
thermal cycling creep loadings, thus cannot be plotted in Fig. 4.6 (it would be almost zero in
this scale of Fig. 4.6). It is clear that thermal cycling creep results in accumulated strains
far in excess of those from isothermal creep which is consistent with numerous
experimental reports. Finally, the effects of progressive damage are illustrated in Fig. 4.7
by employing the statistical description assumed in the previous section for various values
of the shape parameter, b, at a guaranteed e, = .01. The effect of b is to broaden the
distribution (as b increases) so that the development of damage after e, is less 2-rupt as is
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avident \n Fig. 4.7. Although the example shown in Fig. 4.7 is primarily an illustration of the
capabilities of the proposed model, it is evident that the experimentally observed phenomena
of increasing nonlinear strain accumulation with progressive damage can be described with
this model. Efforts to correlate the interfacial damage with observed strain accumulation
are currently underway.

5. Conclusion

Design and assemblage of a new creep thermal cycler with constant stress loading
capability were completed. Preliminary data of dimensional change (accumulated axial
strain) of SiC particulate/6062 Al matrix composite with Vi = 10 and 20% were obtained by
using the above creep thermal cycler. The preliminary data support the analytical predictions
based on the aligned short fiber metal matrix composite we proposed; the larger the volume
fraction of filler, the smaller the dimensional change.

Additional experimental study on measuring the R-curve behavior of Partially
Stabilized Zirconia (PSZ) — stainless steel (SS)/PSZ composite — PSZ laminate reveals that
the layer of SS/PSZ composite sandwiched in PSZ matrix is effective in increasing the
fracture toughness, thus may be usable as a possible crack arrester for otherwise brittie
ceramics.

Dislocation punching was identified as a major relaxation mechanism to reduce the
interfacial misfit strain induced by the difference in coefficient of thermal expansion. The
analytical study covers all the possible interfaces: spherical, 2D curve, ellipsoidal surfaced
and planar interfaces. 1hus the model proved to be applicable to both metal matrix composite-
and coated substrate systems. The predicted strengthening due to dislocation punching in as-
quenched SiC particle/6061 Al matrix composite agrees well with the experimental
observation.

Analytical modeling of creep strain of a metal matrix composite where the interface of
some fraction of fibers is debonded, reveals the strong effect of debonded interface on
enhancing creep strain, thus weakening of the creep resistance. The effect of interfacial
strength is simulated by three-parameter Weibull function, which is then combined with the
analytical model for creep thermal cycling. The predicted results of accumulated axial strain
(dimensional change) of SiC whisker/Al matrix composite clearly demonstrate the strong
effect of the interfacial bond strength on the dimensional change and the importance of the
three parameters used in the Weibull function.
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